
Generation of a New Complexity Dimension
Scheme for Complexity Measure of Procedural

Program

Nikhar Tak, Dr. Naveen Hemrajani

Department of Computer Science & Engg,
Suresh Gyan Vihar University,Jaipur

Abstract - Software complexity measurement has been an age-
long quandary in software engineering as the effort used to
develop, comprehend, or retain the software depends on so
many complicated factors. Measuring and controlling of
complexity will have an important influence to improve
productivity, quality and maintenance of software. So far,
most of the researches have tried to identify and measure the
complexity in design and code phase. However, when we have
the code or design for software, it is too late to control
complexity and leads inaccuracy publishing in the whole
system. In this paper, we propose a new dimension scheme, in
the first phase i.e. Requirement phase of software
development which is based on software requirement
specifications.

Keyword – Code based complexity measures, Cognitive
complexity measures and new scheme for complexity measure.

1. INTRODUCTION
Complexity is a feature of a computer program much like
storage space and speed of execution. It is the main factor
that can lead to defects. The problem of reliability is
basically the problem of software complexity. When the
complexity reaches some thresholds, the defects or faults of
the software grow rapidly. The maintainability of the
software is also having tight correlation with complexity.
Complexity control and management have important roles
in risk management, cost control, reliability prediction, and
quality improvement. The complexity can be classified in
two parts: problem complexity (or intrinsic complexity)
and solution complexity (also referred to as additional
complexity). Solution complexity is added during the
development stages following the requirements phase,
mostly during the designing and coding phase.
Many researchers suppose that software complexity is
made up of the following complexity:

 Problem complexity, which measures the
complexity of the critical problem. This type of
complexity can be traced back to the requirement
phase, when the problem is defined.

 Algorithmic complexity, which reflects the
complexity of the algorithm implemented to
resolve the problem.

 Structural complexity reflects the complexity of
the algorithm implemented to solve the problem.

 Cognitive complexity measures the effort required
to understand the software.

Algorithmic complexity measured implemented algorithm
to solve the problem and is based on mathematical
methods. This complexity is computable as soon as an
algorithm of a solution is created, usually during the design
phase.
Structural complexity is composed of data flow, control
flow and data structure. Some metrics are proposed to
measure this type of complexity, for example McCabe
cyclomatic complexity(that directly measures the number
of linear independent paths within a module and
considered as a correct and reliable metric), Henry and
Kafura metric(measures the information flow to/from the
module are measured, high value of information flow
represent the lack of cohesion in the design that will cause
higher complexity) and Halstead metric (which is based on
the principle of count of operators and operand and their
respective occurrences in the code among the primary
metrics, and is the strongest indicator in determining the
code complexity).
There are some metrics based on cognitive methods [8]
such as KLCID complexity metric (It defines identifiers as
the programmer defined variables and based on identifier
density. To calculate it, the number of unique program lines
is considered).
To prevent slaying helpful resources and complexity, it is
better to focus on early stages of the software life cycle.
Therefore, the result of identifying complexity factors is
low costs and high quality in software development and
particularly in maintenance stages of software. By knowing
these factors, we try to prevent occurring them or establish
new measure in requirement phase. [7] Requirements form
the foundation of the software development process. Loose
foundation brings down the whole structure and weak
requirements documentation leads to project failure. Recent
surveys suggest that 40% to 85% of all defects are inserted
in the requirements phase. Thus, if errors are not identified
in the requirements phase, it is leading to make mistakes,
wrong product development and loss valuable resource.
Well-defined requirements will increase the probability of
the overall success of the software project and later stages
of software development rely heavily on the quality of
requirements, there is a good reason to pay close attention
to it.
This paper aims to assessment and point out the blemish of
existing measures and propose a new measure in early
phase of SDLC.1

Nikhar Tak et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 259 - 264

www.ijcsit.com 259

2. CODE BASED COMPLEXITY MEASURES
Code based complexity measures, as its name is indicating
are based on the code of the program. Code based measures
are typically depends upon the program sizes, program
flow graphs, or module interfaces such as Halstead’s
software science metrics [2] and the most widely known
measure of cyclomatic complexity developed by McCabe
[3]. However, Halstead’s software metrics purely calculates
the number of operators and operands, but it does not
consider the internal structures of modules, while
McCabe’s cyclomatic complexity does not consider I/O’ s
of a system as it is based on the flow chart of the program.
It uses flow chart of the program and on the basis of nodes
and edges it provides complexity of the program.
2.1 Halstead Complexity Measure
Halstead complexity [4] metrics is established for
measuring program complexity with accent on
computational complexity. Halstead metric, directly
measure the complexity from the source code and based on
four numeric values as followed:
n1: Number of non-recurring operators
n2: Number of non- recurring operands
N1: Number of all operators
N2: Number of all operands
Further Length and Vocabulary serve as the basis for
finding out Volume, Latent Volume, Difficulty, effort and
finally Time by using equations (1-7):

Length N = N1+ N2 (1)
Vocabulary n = n1+ n2 (2)
Volume V = n log2

n (3)
Latent Volume V* = (2 + n2) log2

(2+n2) (4)
Difficulty D =V*/V (5)
Effort E = V/D (6)
Time T= E/18 (7)

The main problem with this method or we can say blockage
with this is that it does not distinguish the differences
among the same operators and among the same operands in
a program. Moreover, it ignores the nested structure and
fails to analyze the case statement when code is not
accessible. Other drawback with the Halstead metric is that
they are difficult to compute, especially in large programs.
2.2 Mac Cabe’s Cyclometric Complexity
McCabe’s cyclomatic complexity also known as
conditional complexity based on control flow. It denotes
the number of linearly independent paths through a
program’s source code [10] [3]. This measure provides a
single ordinal number that can be used to measure the
complexity of different programs
The metric is calculated by using equation (8):

CC = e − n + p (8)
Here,
e is the edges of graph,
n is the nodes of graph,
p is the non-connected parts of the graph.

Another formula for calculating complexity is the
following:

CC = Number of Decisions +1

It can be computed early in life cycle than of Halstead's
metrics but there are some difficulties with the McCabe
metric [6]. Although no one would argue that the number
of control paths relates to code complexity, some argue that
this number is only part of the complexity picture.
According to McCabe, a 5,000-line program with six
IF/THEN statements is less complex than a 500-line
program with seven IF/THEN statements and this shows
the complexity of uncontrolled statement are ignored.

3. COGNITIVE COMPLEXITY MEASURES
In cognitive informatics, the functional complexity of
software in design and comprehension is dependent on
fundamental factors such as inputs, outputs,
Loops/branches structure, and number of operators and
operands [5].
3.1 KLCID Complexity Metrics
 Klemola and Rilling proposed KLCID which defines
identifiers as programmer's defined labels. It defines the
use of the identifiers as programmer defined variables and
identifiers (ID) when software is built up [5] [13].
 ID = Total no. of identifiers/ LOC

In order to calculate KLCID, we need to find the number of
unique lines of code in a module, lines that have same type
and kind of operands with same arrangements of operators
would be consider equal. I define KLCID as –
 KLCID= No. of Identifier in the set of unique lines/ No. of
unique lines containing identifier

This is a time consuming method when comparing a line of
code with each line of the program. KLCID accepts that
internal control structures for different software’s are
identical.
3.2 Coginitive Functional Size (CFS)
Wang proposed a Cognitive Functional Size (CFS) state
that the complexity of software is dependent on inputs,
outputs, and its internal processing [9]. As –

CFS = (Ni + No) * Wc

Where,
Ni = No of inputs.
No = No of outputs.
Wc =The total cognitive weight of software

The cognitive weight of software [11] is the degree of
intricacy or relative time and attempt for comprehending
given software modeled by a number of Basic control
structures (BCS).
3.3 Cognitive Information Complexity Measure
Cognitive Informatics plays an important role in
understanding the fundamental characteristics of software.
CICM [12] is defines as the product of weighted
information count of software (WICS) and the cognitive
weight (Wc) of the BCS’s in the software i.e,

CICM = WICS * Wc
Where, WICS is sum of weighted information count of line
of code (WICL). WICL for kth line of code is given by [9]:

WICLk=ICSk/ [LOCS-k]

Nikhar Tak et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 259 - 264

www.ijcsit.com 260

Where, ICSk information contained in software for kth line
of code LOCS: total lines of code. Further ICS is given by:

 LOCS
ICS= Σ (Ik)
 k=1

Where, Ik is the information contained in Kth line of code
and calculated

Ik= (Identifiers + Operands)k

Note that, similar to KLCID CICM is also difficult and
complex to calculate. It calculates the weighted information
count of each line. In their formulation they claim that
CICM is based on cognitive informatics the functional
complexity of software only depend on input, output and
internal architecture not on the operators. Further they
claimed that information is a function of identifiers and
operators. It is difficult to understand that how they claimed
that information is function of operators [5]. Operators are
run time attributes and cannot be taken as information
contained in the software.

4. PROPOSED COMPLEXITY MEASURE

Code based complexity measures such as Halstead
Complexity Measure and Mc Cabe’s Cyclomatic
Complexity Measure are based on the source code of the
procedural programs. On the other hand Cognitive based
complexity measures such as Kinds of Lines of Code
Identifier Density (KLCID), Cognitive Functional Size
(CFS) and Cognitive Information Complexity Measure
(CICM) depend on the internal architecture of the
procedural programs [1]. Thus both the methods will wait
for the source code of the program and take more time to
get implemented.
It will be more beneficial if we can calculate the
complexity of the procedural programs in the earlier phases
of the software development life cycle at the time of
preliminary assessment that is requirement analysis.
New dimension scheme consists of some of the attributes
that must be studied at the time of software requirement
specification on the basis of which procedural program is to
be developed. So the merit of this approach is that it is able
to estimate the software complexity in early phases of
software development life cycle, even before analysis and
design is carried out. Due to this fact this is a cost effective
and less time consuming.
It can be implemented by considering the various attributes
such as:
4.1 Key In – Out (KIO)
KIO can be define as –
KIO = No. of Inputs + No. of outputs + No. of files + No of
interfaces
4.2 Functional Requirement (FR)
Functional requirements should define the elementary trial
that must take place. This can be defined as –

 n

FR = No. of Functions * ∑ SPFi

 i=1

Here, SPF is Sub Process or Sub-functions available after
decomposition.

4.3 Non Functional Requirement (NFR)
It refers to the system qualitative requirements and not
satisfying those leads to customer's dissatisfaction. This can
be represented as –

 n

NFR = ∑ Countj

 i=1

Table - 4.1 Different Types of Non Functional Requirement

4.4 Obligatory Complexity Measure (OC)
This can be calculated by the sum of all functional and its
decomposition into sub-functions and non functional
requirements –

OC = FR + NFR

4.5 Special Complexity Attributes (SCA)
This is referred to as the Cost Driver Attributes of unique
Category from COCOMO Intermediate model proposed
by Berry Boehm. Mathematically defined as –

 5

SCA = ∑ MF
 i = 1

Here, MF is a Multiplying Factor.

4.6 Design Constraints Obligatory (DCO)
It refers to the number of constraints that are to be
considered during development of software.
Represented as –

 n

DCO = ∑ Ci

 i=0

Where Ci is Number of Constraints and value of Ci
will vary from 0 to n.
Ci = 0 If Blind Development.
Ci = Non-Zero If Constraints exists.

Nikhar Tak et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 259 - 264

www.ijcsit.com 261

4.7 Interface Complexity (IFC)
This parameter is used to define number of external
interfaces to the proposed program.

 n

IFC = ∑ If
 i=0

Here If is Number of External Interfaces and value of If will
vary from 0 to n.
If = 0 No External Interface.
If = Non-Zero If External Interface exists

4.8 Users / Location Complexity (ULC)
This parameter discuss the number of users for accessing the
program and locations (Single or Multiple) use. This can be
symbolized as –

ULC = No. of User * No. of Location

4.9 Program Feature Complexity (PFC)
If advancement of the program is to be done then
some features are added and this parameter shows the
program feature complexity by multiplying all the
features that have been added into it. Thus
mathematical representation is as follows –

PFC = (Feature1 * Feature2 *����. * Feature n)

Now by considering all these parameter and defining a new
measure that is “SRS oriented complexity measure.”

It can be mathematically shown as –

SRSO = ((KIO + OC) * SCA + (DCI + IFC + PFC))* ULC

The SRS Based Complexity will be higher for the
programs, which have higher functionality to be
performed and more quality attributes which is to be
retained. All above measure have been illustrated with
the help of an example below –

Example –1:
Develop a procedural program to enter 5 numbers at a time
& display them in reverse order of the input.
Consider this aim to upon going through the SRS; we are
able to extract the following parameters –
Number of Inputs 05(Numbers)
Number of Outputs 05(Reverse sequence of numbers)
Number of Interfaces 01(User Interface)
Number of Files 01(Storage of values)
KIO = 5+5+1+1=12
Number of function = 0
FR = 0
Number of Non Functional Requirement (NFR) = 06
Obligatory Complexity (OC) = FR + NFR
OC = 06
Special Complexity Attribute (SCA) = 0.90 (Suppose
Programmer Capability = High)

Design Constraints Imposed (DCI) = 00 (No directives)
DCI= 0
Interface Complexity (IFC) = 0
Since this program is not to be further connected with any
external interface Number of User / Location (ULC) = 1 *
1= 01
Program Feature Complexity (PFC) = 0
Now,
OCM = ((KIO + OC) * SCA + (DCI + IFC + PFC))* ULC
SRS Oriented Complexity Measure = 16.20
The complexity measured by SRS Oriented Complexity
Measure for the given SRS is 16.20, now program code is
illustrated in Program – 1. Based on the above code we
compute the complexity of the other proposed measures as
shown in Table – 4.2 and 4.3.
Program – 1:
Program to Enter 5 Number at a time & Display them in
Reverse Order of the input.
#include<stdio.h>
#include<conio.h>
void main()
{
 int i, x[5];
 clrscr();
for (i=0;i<5;i++)
 {
 printf("Enter the number\n");
 scanf("%d",&x[i]);
 }
 printf("\nThe reverse order is\n");
 for (i=4;i>=0;i--)
 {
 printf("\n%d",x[i]);
 }
 getch();
}

Table 4.2 – Calculation for code and cognitive complexity

measure

KLCID CFS CICM

ID 6 Ni 5 LOC 18

LOC 18 No 5 Identifier 6

ID 0.34
BCS

(Seq.)
1

SBCS

7 No. of
exceptional

Lines having
Identifier

6

BCS
(For

Loop)
3

BCS
(For

Loop)
3

No. of
Identifier in the

set of
exceptional

Lines

12 Wc 7 WICS 2.49

KLCID 0.50 CFS 70
CICM

17.43

Nikhar Tak et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 259 - 264

www.ijcsit.com 262

Table 4.3 – Calculation for code and cognitive complexity
measure

5. COMPARISION BETWEEN VARIOUS COMPLEXITY

MEASURES
SRSO is applied on a program developed in C language
and used to enter 5 numbers at a time & display them in
reverse order of the input.In order to analyze the validity of
the result; the SRSO is calculated on the basis of SRS and
further compared with other established measures which
are based on Code and Cognitive complexity. In order to
show comparison result a chart is considered.

0

10

20

30

40

50

60

70

Halstead KLCID CICM

Figure – 5.1 Comparison among various complexity

measures

This graph consist both code and cognitive based
complexity measures along with the SRS oriented
complexity measure for a procedural program for display
reverse of 5 numbers. In other methods that are code and
cognitive complexity measure the source code of the
program is needed but in SRS oriented complexity measure
time in waiting for coding is saved as it gauge the
complexity at the time of very first phase of software
development life cycle that is requirement analysis phase in
which software requirement specification is built up and
this also improves the quality of the program as Design
Constraints Obligatory (DCO), Interface Complexity (IFC),
Users / Location Complexity (ULC), Program Feature
Complexity (PFC) are different parameters that are also
calculated for the program and this other information is
gathered in SRS phase so quality of program is increased as
most of the parameters are very well known and calculated

earlier. While other complexity measures will wait for the
source code of the program and even then there is no way to
calculate design constraints, interface needed, location of
accessing the program or number of users who can access
program and any program features calculating parameter.

 CONCLUSION
In this paper, the drawbacks of existing software
complexity measures were analyzed such as Halstead
measure the main problem with this is that it does not
distinguish the differences among the same operators and
among the same operands in a program. Other drawback
with the Halstead metric is that they are difficult to
compute, especially in large programs; a difficulty with the
McCabe metric is it ignored the complexity of uncontrolled
statement.
Likewise when we analyze the cognitive complexity
measures such as KLCID complexity metrics we found that
it is very time consuming; similar to KLCID Cognitive
Information complexity measure (CICM) is also difficult
and complex to calculate because it calculates the weighted
information count of each line. Further CICM claimed that
information is a function of identifiers and operators. It is
difficult to understand that how they claimed that
information is function of operators. Operators are run
time attributes and cannot be taken as information
contained in the software.
Thus we presented a new qualitative method to measure the
complexity of procedural programs which is applicable
before coding phase i.e, SRS Oriented Complexity
Measure.
It is useful for procedural programs as it is implemented at
requirement phase of software development life cycle. So,
it is not depended on the coding phase to be completed and
developing cost and resources will be saved too. At the
time of coding, programmer will be having complexity so it
will help him/her to keep limit on the complexity of the
code is to be generated. This measure is computationally
simple and will aid the developer and practitioner in
evaluating the software complexity in early phases which
otherwise is very tedious to carry out as an integral part of
the software planning. Since entire approach is based on
SRS document so it is for sure that an SRS must have all
the characteristics, content and functionality to make this
estimation precise and perfect. This measure is simple to
understand, easy to calculate and less time consuming i.e. it
satisfy most feature of a good measure.

REFERENCES
[1] Weyuker E., Evaluating software complexity measures. IEEE

Transactions on Software Engineering, 1988, 14 (9):1357-1365
 [2] Halstead, M.H., Elements of Software Science, Elsevier North, New

York, 1977.
[3] Mc Cabe, T.H., A Complexity measure, IEEE Transactions on

Software Engineering, SE-2,6, pp. 308- 320, 1976.
[4] Halstead M.H, "Element of Software Science", Amsterdam: Elsevier,

1977.
[5] T.Klemola and J.Rilling, "A Cognitive complexity metric based on

Category learning" Proceedings of EEEE (ICCI'03), pp.103-108,
2003.

[6] Elaine J. Weyuker, “Evaluating Software Complexity Measures”,
IEEE Transactions on software engineering, Vol. 14, No. 9,
September 1988.

[7]IEEE Computer Society: IEEE Recommended Practice for Software
Requirement Specifications, New York, 1994.

Mc Cabe Halstead

Nodes 9
n1 17

n2 05

Edges 10

N1 36

N2 07

Predicate
Node

2

Vocabulary 22

Program Length 42

Regions 2
Effort 6648.14

Time 369.34

V(G) 3 Halstead Difficulty 18.38

Nikhar Tak et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 259 - 264

www.ijcsit.com 263

[8] Wang. Y and Shao,J., ”On Cognitive informatics”, 1st IEEE
International Conference on Cognitive Informatics, Pages 34-42,
August 2002.

[9] Wang, Y. and Shao, J., “Measurement of the Cognitive Functional
Complexity of Software”, 3 rd IEEE International Conference on
Cognitive Informatics (ICCI’04).

[10]Y.Wang. and J. Shao. "Measurement of the
Cognitive Functional Complexity of Software," Cognitive weights",

Proceedings of IEEE (ICCI'03). 69-74, 2003.

[11] Wang.Y and Shao J. (2003). A new measure of software complexity
based on coginitive weights, Can.J.Elect. Comput. Eng., 28, 2, 69-
74.

 [12]D.S.Kushwaha and A.XK Misra,"Robustness Analysis of Cognitive
Information Complexity\Measure using Weyuker Properties," ACM
SIGSOFT SEN 31, 1, 2006.

[13]Anurag Bhatnagar,Nikhar Tak and Shweta Shukla, “A literature
survey on various software complexity measures”, IJASCSE

Volume 1 Issue 1 2012.

Nikhar Tak et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 259 - 264

www.ijcsit.com 264

